School choice takes various forms in the U.S. and abroad. Tuition-free public school choice options include charter schools, magnet schools and access to particular traditional public schools through residential choice. Private educational choice options are available in over half the U.S. states and over a dozen countries through vouchers, tax-credit scholarships, individual tax credits/deductions and education savings accounts (ESAs).

ESAs have been enacted in five states in the U.S.: Arizona in 2011, Florida in 2014, and Mississippi, Nevada, and Tennessee in 2015. Policymakers in Texas have proposed a universal ESA which would place all children’s public education funding into savings accounts to be used by parents solely for the child’s educational expenditures (Huffines and Colyandro; Grusendorf and Scherer). Approved uses of these funds include private school tuition and fees, online learning, tutoring services, and higher education expenses. By permitting parents to customize their child’s education, ESAs are expected to increase the educational outcomes of students. Since a better education enhances the social and citizenship skills of students, it could decrease their likelihood of committing crimes. Research finds that school choice programs such as these actually reduce the incidences of criminal behavior in young adults (DeAngelis and Wolf; Deming; Dills and Hernández-Julián).

While the overall crime rate recently has dropped in Texas (McCuilough), the state still hovers around the top 20 percent in the country in property crimes per capita and the top 30 percent in violent crimes per capita (Compare 50). Texas’ average rank was 6th for property crimes per capita and 13th for violent crimes per capita during the period 2000 to 2014.

In this study, we use results from existing research to estimate the impact of a universal ESA on criminal activity in Texas. Drawing upon our study of the crime reduction effects of the Milwaukee Parental Choice Program (DeAngelis and Wolf), we forecast that a universal ESA in Texas could reduce the number of felonies and misdemeanors committed by the K-12 students enrolled in the program in the first year by around 749 by the time they are 22-25 years old. This reduction in crime would decrease social costs by almost $7 million. These benefits would grow dramatically over the first five and ten years of the program.

Background

There is an abundance of research on school choice programs around the world. Most studies focus on how choice affects standardized test scores, high school graduation, and college enrollment. Shakeel, Anderson, and Wolf (2016) conducted a meta-analysis of the test score impacts of school voucher programs across the globe and found overall statistically significant positive results, especially after three or more years of the program.

Only a few studies have examined the intersection between school choice programs and crime. David Deming (2011) compared the adult criminal activity of winners and losers of the 2002 charter school admissions lottery in Charlotte-Mecklenburg County, North Carolina. He found a large reduction in criminal activity of about 50 percent for a high-risk group of male students if they gained access to charter schools. Dills and Hernández-Julián (2011) examined how parents’ ability to select their child’s public school by moving, generally called “residential school choice,” influenced criminal activity. They found that a moderately

* All social cost estimates are in 2016 dollars.
large increase in residential school choice was associated with a 40 percent decrease in juvenile crime.

We evaluated the effects of the oldest urban school voucher program, the Milwaukee Parental Choice Program (MPCP), on crime (DeAngelis and Wolf). We took 1,089 MPCP students who were in either 8th or 9th grade in 2006 and matched them with 1,089 similar public school students. Each matched student was similar regarding grade, race, gender, English Language Learner status, baseline math and reading test scores, and neighborhood. The match on baseline test scores and neighborhood were especially important because students with similar achievement levels and who live in the same neighborhood tend to have similar propensities to commit crimes. Additionally, research has shown that this particular matching procedure is one of the best at replicating experimental results (Bifulco). We searched for each of the 2,178 students in a comprehensive Wisconsin state database of criminal records when they were around 22-25 years old and found that participation in the MPCP throughout high school was associated with a 79 percent reduction in the likelihood that a given student would commit any felonies and a 66 percent reduction in the likelihood that a student would commit any misdemeanors.

Data and Methods

We use our estimates of the crime reduction impact of the MPCP to determine the potential effect of an ESA program on the criminal activity of Texas students. It is reasonable to draw upon the Milwaukee school choice program effects in this case because, even though ESAs allow parents to choose to use their child’s educational funds to purchase more than just private school tuition, most parents use ESAs to cover private school tuition, especially in the first years of such programs (Butcher and Burke).

The forecasted social benefit of launching a universal ESA program in Texas in the fall of 2017 due to the program’s estimated crime reduction can be summarized as:

\[
	ext{Social Benefit} = \text{Public School Enrollment} \times \text{Program Participation Rate} \times \text{Consistent User Rate} \times \text{Crime Reduction Rate} \times \text{Average Cost of a Crime}
\]

Public School Enrollment is estimated for 2017-18 in Texas based on the U.S. Census Bureau’s Digest of Education Statistics, table 203.20, and the assumption that the school age population will increase by 1 percent each year. **Program Participation Rate** is set at 5 percent of all students in the first year of the program (2017-18), doubling to 10 percent the second year and growing by 1 percentage point each subsequent year, as happened when the DC Opportunity Scholarship program was launched in 2004-5 and also when the Milwaukee program was expanded to religious schools in 1998-99 (Wolf et al.; Wolf). **Consistent User Rate** represents the proportion of ESA participants who will remain in the program for four consecutive years and is set at 44 percent based on the Milwaukee Parental Choice Program (DeAngelis and Wolf). We assume that students who participate in the program for less than the full four years of high school experience no reduction in their likelihood of committing crimes in the future—a very conservative assumption.

Crime Reduction Rate is 3.44 percentage points (representing a 79 percent reduction) for felonies and 4.76 percentage points (representing a 66 percent reduction) for misdemeanors, again drawing upon the Milwaukee school choice crime reduction study (DeAngelis and Wolf). **Average Cost of a Crime** is set conservatively as $20,000 for each prevented felony and $1,700 for each prevented misdemeanor (McCollister et al.; Levine and Siegel). We estimate the social benefit of reductions in felonies and reductions in misdemeanors separately and then combine the two benefits into a total program social benefit. See the Appendix for additional details regarding our forecasting methodology.

Results

Felony Reduction

Out of the 5,399,800 students projected to enroll in public schools in the fall of 2017, we assume that 5 percent will participate in the ESA program and that 44 percent of the participants will persist in it over four years. In other words, 118,796 participating students will persist throughout the program. If we assume that these persisting students are equally distributed across all K-12 levels, about 9,138 of them would be in 9th grade in the baseline year of 2017. These will be the first students able to get a full four-year high school experience in the program. After the first four years of the program, we assume that 9,138 of these students will exit as adults. These same students would not become 22 years old until 2025. Since 2025 is the first year that the first set of full dose students could benefit from the program, it is our first year of realized results.
Based on a 3.44 percentage point reduction in felonies committed, we estimate that 314 fewer felonies will be committed by the students who have persisted through the program and become at least 22 years old by the year 2025.* By 2030, we estimate that 3,283 fewer felonies will be committed by the persisting students who have exited the program and become at least 22 years old. By 2035, we estimate that 8,682 fewer felonies will be committed by the students persisting through the program. These results, and their 95 percent confidence intervals, are presented in Figure 1.

Due to the reduction of 314 felonies committed by the first cohort of students who persist in the program throughout high school, costs to society would decrease by about $6 million in 2025. By 2030 and 2035, social costs avoided through the decrease in participant criminal activity would cumulate to $66 million and $174 million, respectively. These results, and their 95 percent confidence intervals, can be found in Figure 2.

Misdemeanor Reduction

Based on a 4.76 percentage point reduction in the number of misdemeanors committed by the first 9,138 students persisting in the program throughout high school, we estimate that the number of misdemeanors will decrease by 435 by 2025. By 2030 and 2035, that number will cumulate to 4,542 and 12,014, respectively. These results, and their 95 percent confidence intervals, can be found in Figure 3.

* We looked up criminal records when the students were between 22 and 25 years old (DeAngelis and Wolf), so we do not know exactly when the crimes were committed. Since students would have committed these crimes sometime during the first seven years of their adulthood, we expect that our future estimates are the most accurate.
If we assume that a misdemeanor costs $1,700 to society, on average, a 6,126 reduction in the number of misdemeanors committed by the first cohort of students will result in a social cost savings of about $1 million by 2025. By 2030 and 2035, this cost savings will grow to $8 million and $20 million, respectively. These results, and their 95 percent confidence intervals, can be found in Figure 4.

Table 1: Projected Cumulative Social Benefits with ESA in Texas

<table>
<thead>
<tr>
<th></th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative Persisting Participants</td>
<td>118,800</td>
<td>349,608</td>
<td>498,671</td>
</tr>
<tr>
<td>Δ Felonies</td>
<td>314</td>
<td>3,283</td>
<td>8,682</td>
</tr>
<tr>
<td>Social Benefits from Reduced Felonies (Millions)</td>
<td>$6</td>
<td>$66</td>
<td>$174</td>
</tr>
<tr>
<td>Δ Misdemeanors</td>
<td>435</td>
<td>4,542</td>
<td>12,014</td>
</tr>
<tr>
<td>Social Benefits from Reduced Misdemeanors (Millions)</td>
<td>$1</td>
<td>$8</td>
<td>$20</td>
</tr>
<tr>
<td>Δ Felonies and Misdemeanors</td>
<td>749</td>
<td>7,825</td>
<td>20,696</td>
</tr>
<tr>
<td>Total Social Benefits (Millions)</td>
<td>$7</td>
<td>$74</td>
<td>$194</td>
</tr>
</tbody>
</table>

Overall

All of the previously discussed results can be found in Table 1. The first cohort of high school students to experience four years of a Texas universal ESA program would produce 749 fewer felonies and misdemeanors by the time they become 22 years old, resulting in about $7 million in benefits to society by 2025. The cumulative social benefits would amount to $74 million by the end of 2030 and $194 million by the end of 2035.

Table 2: Alternative Projected Cumulative Social Benefits with ESA in Texas

<table>
<thead>
<tr>
<th></th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative Persisting Participants</td>
<td>118,800</td>
<td>360,103</td>
<td>529,080</td>
</tr>
<tr>
<td>Δ Felonies</td>
<td>314</td>
<td>3,329</td>
<td>8,962</td>
</tr>
<tr>
<td>Social Benefits from Reduced Felonies (Millions)</td>
<td>$9</td>
<td>$95</td>
<td>$255</td>
</tr>
<tr>
<td>Δ Misdemeanors</td>
<td>435</td>
<td>4,607</td>
<td>12,401</td>
</tr>
<tr>
<td>Social Benefits from Reduced Misdemeanors (Millions)</td>
<td>$1</td>
<td>$8</td>
<td>$22</td>
</tr>
<tr>
<td>Δ Felonies and Misdemeanors</td>
<td>749</td>
<td>7,936</td>
<td>21,364</td>
</tr>
<tr>
<td>Total Social Benefits (Millions)</td>
<td>$10</td>
<td>$103</td>
<td>$277</td>
</tr>
</tbody>
</table>
Alternative Estimates

The previously discussed results all rely on extremely conservative assumptions about the social costs of crimes and the enrollment growth rate. Table 2 illustrates our overall results which may rely on more realistic assumptions. To be more aligned with the previous literature, we assume the average cost of a felony to be $28,500 and the average cost of a misdemeanor to be $1,750. Additionally, we assume that the annual growth in school enrollment is equal to Texas’ historical average of 1.6 percent.

The first cohort of high school students to experience four years of a Texas universal ESA program would produce 749 fewer felonies and misdemeanors by the time they become 22 years old, resulting in about $10 million in benefits to society by 2025. The cumulative social benefits would amount to $103 million by the end of 2030 and $277 million by the end of 2035.

Conclusions and Policy Recommendations

Our results indicate that enacting a universally available Education Savings Account program in Texas could have large benefits tied to crime reduction. Like all policy forecasts, ours is based on some assumptions. We assume that the percentage point reductions in criminal activity that result from this program will mirror those found for the voucher program in Milwaukee. We also assume that the estimates for the social costs of criminal activity by McCollister, French, and Fang (2010) and Levine and Siegel (2011) are accurate. Although we see no reason to doubt these assumptions, we make several attempts to mitigate their impact. We report 95 percent confidence intervals of our results to provide a range of possible outcomes and use conservative estimates for several important variables.

While the public school enrollment has been increasing by about 1.6 percent each year, we assume a growth rate of only 1 percent. Even though the program would be universal, we assume a slow growth rate in student participation each year. We also use a much lower estimate of the social cost of a felony than the literature suggests and assume that each criminal only commits a total of one crime.

Our best, conservative estimate is that the state of Texas would save $194 million in social costs by 2035 due to the crime-reducing effects of a universal ESA program launched in 2017. As the saying goes, “crime doesn’t pay,” but preventing crime through educational choice clearly would pay off for Texans.
References

Grusendorf, Kent, and Nate Scherer. 2016. How ESAs Can Keep Texas the Land of the Free and Home of the Brave, Texas Public Policy Foundation.

Appendix

We use data from table 203.20 from the Digest of Education Statistics in order to estimate the current fall 2017 student enrollment in Texas.* We use a conservative student growth estimate of 1 percent per year to forecast elementary and secondary public school student enrollment in Texas from 2018 to 2027. Actual elementary and secondary public school student enrollment grew at a rate of 1.6 percent per year from the fall of 2008 to the fall of 2013.

To estimate the number of overall program participants in a given year, i, who will participate in the choice program throughout high school, we use the following formula:

\[
\text{RelevantParticipants}_i = \text{PublicEnroll}_i \times \text{ParticipationRate}_i \times 0.44
\]
Where \(PublicEnrolli \) is the total number of students enrolled in public schools in Texas in year \(i \) and \(ParticipationRatei \) is the percent of public school students who choose to participate in the ESA program. We assume that 5 and 10 percent of public school students will participate in the program in years one and two, respectively. Both the DC Opportunity Scholarship Program and the Milwaukee Parental Choice Program experienced such participation rates when the DC program was launched in 2004-05 and when the Milwaukee program was expanded to include religious schools in 1998-99 (Wolf et al.; Wolf). We assume a steady growth in the participation rate of one percentage point for each additional year of the program after year two.

Since the results of our prior study apply to the students who remained in the choice program throughout high school (44 percent of the students), we multiply the product of the first two variables by 44 percent. By doing this, we are making the conservative assumption that the other 56 percent of students who leave the choice program prior to graduation will experience no program effect on their propensity to commit crimes.

To estimate the expected crime reduction from 2017 to a given time period, \(i \), we use:

\[
CrimeReduction_{ij} = TotalPersist \times CrimeChange_j
\]

Where the outcome of interest, \(CrimeReduction \), is the number of crimes reduced for all students who participated in the program continuously from the year 2017 to the future year, \(i \), for a given type of crime, \(j \). This reduction amount is calculated for felonies and misdemeanors separately in our analysis. The variable, \(TotalPersist \), is the total number of students who persisted through the ESA program for at least four years and had turned at least 22 years old by year \(i \). This allows us to report results for all of the persisting students who were previously enrolled in the program, who have exited the program as adults. The last variable, \(CrimeChange \), is the percentage point reduction in the likelihood that a given student will commit a certain type of crime, \(j \). Since we assume that the percentage point reductions in Texas will be equal to the reductions in Milwaukee, this variable takes on the value 3.44 percentage points (79 percent) for felonies and 4.76 percentage points (66 percent) for misdemeanors.

To estimate the reduction in social costs tied to the reduction in felonies and misdemeanors, we use the following formula:

\[
SocialCostReduction_{ij} = CrimeReduction_{ij} \times CrimeCost_j
\]

Where the dependent variable of interest, \(SocialCostReduction \), is the total reduction in social costs up until a given year, \(i \), that are related to a given type of crime, \(j \). \(CrimeCost \) is the monetary estimation of the average social cost of the two different types of crime, \(j \).

We use the results from McCollister, French, and Fang (2010) in order to estimate the average social cost of a single felony in our sample. If we exclude their estimates for the top two harmful types of felonies (murder and sexual assault), the average felony is still estimated to be about $28,500. We choose to use a more conservative estimate of $20,000, which is about 30 percent lower.

In order to estimate the average social cost of a single misdemeanor in our sample, we use results from a report issued by the Police Reform Organizing Project (PROP) which states that each misdemeanor, on average, costs society about $1,800. Instead, we use a slightly lower estimate of $1,700. We should note that these social costs are for a single felony or misdemeanor.

Our analysis uses estimates based on reduction in the likelihood that students will commit any felonies or misdemeanors. We assume that the students who will commit any felonies or misdemeanors will only commit one. Since it is likely that at least some of these students will commit two or more crimes, our social cost estimates may be a lower bound of the true impact.

About the Authors

Corey A. DeAngelis is a distinguished doctoral fellow in the Department of Education Reform at the University of Arkansas in Fayetteville. A native Texan, he earned bachelor's and master's degrees Summa Cum Laude in economics from the University of Texas at San Antonio. His research interest is in market-based reform of the education system.

Dr. Patrick J. Wolf is a distinguished professor of Education Policy and 21st Century Endowed Chair in School Choice at the University of Arkansas in Fayetteville. He primarily leads or assists with rigorous longitudinal evaluations of private school voucher programs. He received his Ph.D. in political science from Harvard University and previously taught at Columbia and Georgetown.

About the Texas Public Policy Foundation

The Texas Public Policy Foundation is a 501(c)3 nonprofit, nonpartisan research institute. The Foundation's mission is to promote and defend liberty, personal responsibility, and free enterprise in Texas and the nation by educating and affecting policymakers and the Texas public policy debate with academically sound research and outreach.

Funded by thousands of individuals, foundations, and corporations, the Foundation does not accept government funds or contributions to influence the outcomes of its research.